Do human emissions dominate changes in atmospheric CO2?

Since 1958 the CO2 content of the atmosphere has been measured. The volume of CO2 has clearly increased from an average of 315.97 ppm in 1959 to 404.21 in 2016.

Global CO2

This time series has a significant linear trend. R2 = 0.99 (p = 1.07E-57)

We are told that this increase is driven by human emissions, significantly from burning fossil fuels:

1958  8.999 Gt                        (http://cdiac.ornl.gov/CO2_Emission/timeseries/global)

2016 33.5084 Gt                    ( BP Statistical Review of World Energy June 2016)

CO2 Global Emissions

This time series also shows a significant linear trend. R2 = 0.97 (p = 2.46E-44)

Although there is a significant linear trend in atmospheric CO2, year to year changes are not uniform.

Ratio Emissios to Atmosphere Change CO2

The trend in inter-annual change shows a significant linear trend. R2 = 0.54 (p = 7.64E-11)

Global emissions and atmospheric concentration

but the proportion due to human emissions does not, and in two years emissions do not account for the observed increase. The variability of emissions to observed increase is also of interest.

Emissions as proportion of atmospheric increase

Given a fixed rate of natural fluxes human emissions have risen to a peak of  4.62% of natural fluxes in 2013.

Human Emissions as % Natural Flux

The lack of measurement of natural global fluxes means that it is assumed that  they are uniform, a weak scientific position on par with the narrative that climates pre 1950 were uniform and benign.

The Canary in the coalmine

Water vapour is the dominant ‘greenhouse gas’ and the models projecting future warming rely on the positive feedback as water vapour content increases with warming.Whilst accepted as fact this is still a speculative theory, with little supporting evidence.

However the direct role of CO2 should be detectable where there is little water vapour, especially in deserts. A good location would therefore be Death Valley, where external influences, especially from water vapour, is limited.

The world record temperature of 134°F (57°C)  was set at Furnace Creek on July 10, 1913. when five consecutive days reached 129° F (54°C) or above.

If the temperature of the air is sensitive to CO2 content then temperatures in Death Valley should reflect this by reflecting the world temperature.

In fact this is not the case.

From recent annual data

http://weather-warehouse.com/WeatherHistory/PastWeatherData_DeathValley_DeathValley_CA_April.html

Rank  Rank
Mean Mean Mean
Year Minimum Maximum Temperature HADCRUT4
2016 6 21 13 1
2015 22 17 20 2
2014 4 11 4 3
2013 2 8 3 10
2012 13 18 17 13
2011 23 28 26 16
2010 45 44 44 4
2009 40 26 29 7
2008 17 23 21 17
2007 8 15 12 12
2006 28 39 32 7
2005 39 38 39 5
2004 9 21 15 14
2003 43 48 47 7
2002 18 13 17 10
2001 41 37 37 15
2000 13 3 8 21
1999 54 52 52 20
1998 56 49 55 6
1997 46 24 32 18
1996 18 12 15 28
1995 50 39 44 19
1994 27 19 21 24
1993 24 20 23 29
1992 9 4 5 32
1991 49 41 44 23
1990 12 7 10 21
1989 1 1 1 31
1988 41 41 42 25
1987 16 4 10 26
1986 24 29 27 36
1985 18 13 19 44
1984 48 43 43 43
1983 53 54 54 26
1982 26 46 39 42
1981 7 6 5 30
1980 36 30 29 33
1979 34 30 31 34
1978 44 50 50 46
1977 5 15 7 36
1976 36 45 41 56
1975 51 55 53 52
1974 29 32 28 54
1973 32 35 35 34
1972 30 24 25 47
1971 32 33 35 53
1970 52 51 51 44
1969 15 27 24 40
1968 34 33 37 50
1967 55 56 56 49
1966 21 9 14 47
1965 36 53 48 51
1964 31 36 32 55
1963 46 47 49 36
1962 3 2 2 41
1961 9 10 9 39

There is little correlation between Death Valley mean annual temperatures and HADCRUT4.4 (none are significant at the 5% level).

Minimum R2 =0.02 (p = 0.36)

Maximum R2 =0.05 (p = 0.09)

Mean R2 = 0.04 (p = 0.15)

Minimum temperatures, which should be most sensitive to CO2, are increasing, but not at a significant rate:

Death Valley Min

R2 = 0.03 (9p = 0.22)

This canary should be singing lustily, but no tweet since 1913.

Another frayed end of CAGW.

I’ve looked at clouds…..

12 new cloud types gain recognition in the International Cloud Atlas

Volutus (roll clouds) and Asperatas (wave like bases) are two of the new additions. http://www.bbc.co.uk/news/science-environment-39351843

The new version of this important reference work is now available online.

https://www.wmocloudatlas.org/home.html

Of particular interest is the comment of BBC meteorologist John Hammond.

“It’s one example of how crucial knowledge of cloud physics is – it’s not just an aesthetic, our knowledge of clouds is still fairly limited.”

Given the significance of clouds in the dynamics of the atmosphere and hence temperatures the ‘limited knowledge’ has significant implications for our understanding, and our models, of temperature changes.

 

Roll Clouds over Racine, Wisconsin, USA
Source: Commons – Wikipedia.com

 

Beautiful clouds.JPG

Asperatus clouds

By Ave Maria Mõistlik – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6581290

 

Fear of Climate Change

‘NO passion so effectually robs the mind of all its powers of acting and reasoning as fear. ‘

Edmund Burke: 1757. A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful

 

Deep seated in the human psyche is a mascochistic delight in fear. Fear of nature was originally expressed through the fear of ‘wrathful gods’ but while science to an extent has assuaged our fears it has not eliminated them completely. We still seem to need the thrill of subjective fear, despite our objective knowledge, and this has been well harnessed by Catastrophic Anthropogenic Global Warming which demands that we make our modern version of sacrifices to Mother Nature through Carbon Taxes and the like.

 

‘The genius of civilisation rests on its capacity to turn our aggression against ourselves. It is not overt terror that succeeds, but the covert terror that is internalised in the form of conscience – that is the secret of the success of civilisation.’ Shadia B. Drury, 2004. Terror and Civilization: Christianity, Politics and the Western Psyche . P107/108

Dr. James Hansen’s Predictions (2)

In 1988 Dr James Hansen had predicted that global temperatures would “reach and maintain a level at least three standard deviations above the climatology of the 1950s“.

In the first post it is clear that the Mean Annual UK temperatures lag behind this prediction. However this is only a tiny portion of the earth, what about elsewhere.?

Finding long term data is not easy but there are long term records published for New Zealand, Australia and the contiguous continental USA.

Another small section of the globe:

New Zealand Mean Annual Temperature – 7 Station Composite Data (Auckland, Masterton, Wellington, Hokitika, Nelson, Lincoln, Dunedin)

7-Station Composite
Year Temp (oC) Std Dev (1950s Climate Normal)
1950 12.12 0.32
1951 11.80 -0.48
1952 12.12 0.32
1953 12.06 0.17
1954 12.59 1.50
1955 12.78 1.98
1956 12.92 2.33
1957 12.46 1.18
1958 12.39 1.00
1959 12.15 0.40
1960 12.27 0.70
1961 12.28 0.72
1962 12.91 2.31
1963 11.96 -0.08
1964 12.02 0.07
1965 11.88 -0.28
1966 12.15 0.40
1967 12.27 0.70
1968 12.21 0.55
1969 12.18 0.47
1970 12.87 2.21
1971 13.10 2.79
1972 12.24 0.62
1973 12.69 1.75
1974 12.74 1.88
1975 12.61 1.55
1976 11.73 -0.66
1977 11.77 -0.56
1978 12.82 2.08
1979 12.55 1.40
1980 12.25 0.65
1981 12.86 2.18
1982 12.11 0.30
1983 12.03 0.10
1984 12.68 1.73
1985 12.85 2.16
1986 12.65 1.65
1987 12.77 1.96
1988 12.93 2.36
1989 12.97 2.46
1990 12.99 2.51
1991 12.17 0.45
1992 11.48 -1.29
1993 11.84 -0.38
1994 12.33 0.85
1995 12.59 1.50
1996 12.45 1.15
1997 12.27 0.70
1998 13.41 3.57
1999 13.35 3.41
2000 12.79 2.01
2001 12.90 2.28
2002 12.67 1.70
2003 12.62 1.58
2004 12.17 0.45
2005 13.11 2.81
2006 12.40 1.03
2007 12.67 1.70
2008 12.86 2.18
2009 12.29 0.75
2010 13.07 2.71
2011 12.83 2.11
2012 12.45 1.15
2013 13.33 3.36
2014 12.79 2.01
2015 12.75 1.91

 From 1909 the 7 Station composite data broke the 3 Standard Deviation limit only in 1998 & 1999, and 2013.

Both the UK and New Zealand enjoy maritime climates and therefore should reflect the effects of warming over the oceans.

 

In Australia there are 10 stations (Adelaide, Alice Springs, Cairns  , Darwin, Hobart (Tasmania), Larapuna (Tasmania), Marble Bar, Melbourne, Perth, Sydney) that allow a composite Mean Annual Temperature to be calculated.

Year Mean Annual Temperature Std Dev from 1950s Climate Normal
1950 19.37 0.20
1951 19.47 0.54
1952 19.23 -0.28
1953 19.31 0.00
1954 19.42 0.35
1955 19.45 0.46
1956 19.23 -0.28
1957 19.47 0.54
1958 21.26 6.50
1959 19.87 1.86
1960 19.25 -0.21
1961 19.93 2.07
1962 19.72 1.35
1963 19.54 0.77
1964 19.35 0.15
1965 19.55 0.80
1966 19.17 -0.46
1967 19.47 0.53
1968 19.31 -0.01
1969 19.54 0.77
1970 19.53 0.75
1971 19.56 0.83
1972 19.79 1.59
1973 20.12 2.71
1974 19.51 0.66
1975 19.72 1.37
1976 19.35 0.14
1977 19.64 1.09
1978 19.53 0.74
1979 19.93 2.08
1980 20.14 2.77
1981 20.05 2.48
1982 19.63 1.07
1983 19.83 1.75
1984 19.56 0.83
1985 19.81 1.66
1986 19.64 1.10
1987 19.79 1.60
1988 20.37 3.53
1989 19.80 1.65
1990 20.00 2.30
1991 20.08 2.57
1992 19.68 1.22
1993 19.97 2.19
1994 19.79 1.60
1995 19.62 1.02
1996 19.85 1.79
1997 19.76 1.51
1998 20.36 3.50
1999 20.06 2.51
2000 19.92 2.02
2001 19.85 1.80
2002 20.13 2.73
2003 20.18 2.92
2004 20.01 2.35
2005 20.40 3.63
2006 19.95 2.12
2007 20.36 3.51
2008 20.05 2.47
2009 20.45 3.80
2010 20.31 3.34
2011 19.95 2.14
2012 20.04 2.45
2013 20.60 4.31
2014 20.48 3.92
2015 21.54 7.46

In Australia the 10 station composite Mean Annual Temperature has broken 3 Standard deviations 12 times 1914, 1915, 1958, 1988, 1998, 2005, 2007, 2009, 2010, 2013, 2014, 2015

 This is much more supportive of Dr Hansen’s prediction, except that Australia’s temperatures were extreme in the 50s and before.

In the USA

Year Mean Temperature Anomaly Std Dev (1950s Climate Normal) Rank Std Dev
1950 -0.35 -1.06 98
1951 -0.50 -1.41 105
1952 0.14 0.08 44
1953 0.75 1.50 13
1954 0.73 1.45 14
1955 -0.18 -0.67 79
1956 0.18 0.17 41
1957 0.01 -0.22 53
1958 -0.05 -0.36 60
1959 0.05 -0.13 50
1960 -0.32 -0.99 96
1961 -0.08 -0.44 68
1962 -0.07 -0.40 63
1963 0.13 0.07 45
1964 -0.19 -0.69 81
1965 -0.18 -0.67 79
1966 -0.29 -0.93 92
1967 -0.14 -0.58 75
1968 -0.39 -1.15 101
1969 -0.29 -0.91 90
1970 -0.23 -0.77 84
1971 -0.20 -0.71 82
1972 -0.36 -1.08 99
1973 0.15 0.11 42
1974 0.13 0.07 45
1975 -0.29 -0.91 90
1976 -0.31 -0.95 94
1977 0.29 0.44 34
1978 -0.54 -1.50 107
1979 -0.63 -1.72 109
1980 0.21 0.24 39
1981 0.61 1.18 24
1982 -0.37 -1.11 100
1983 -0.08 -0.42 67
1984 -0.02 -0.29 57
1985 -0.40 -1.17 102
1986 0.72 1.44 16
1987 0.73 1.45 14
1988 0.34 0.55 32
1989 -0.10 -0.48 71
1990 0.83 1.68 12
1991 0.63 1.23 23
1992 0.32 0.51 33
1993 -0.42 -1.22 103
1994 0.47 0.86 29
1995 0.35 0.57 31
1996 -0.07 -0.41 65
1997 0.10 -0.01 47
1998 1.23 2.61 4
1999 1.03 2.16 6
2000 0.69 1.37 17
2001 0.93 1.93 8
2002 0.66 1.29 20
2003 0.69 1.36 18
2004 0.60 1.15 25
2005 0.90 1.85 10
2006 1.24 2.64 3
2007 0.91 1.86 9
2008 0.15 0.11 42
2009 0.21 0.24 39
2010 0.53 1.00 27
2011 0.64 1.26 21
2012 1.81 3.97 1
2013 0.23 0.29 37
2014 0.28 0.40 35
2015 1.32 2.83 2

 

From 1901 Contiguous USA Mean Annual Temperatures exceeded +3 Standard Deviations for one year in 2012, not supporting Dr. Hansen’s view.

 

As yet therefore there is no clear signal of AGW in the regional record despite Dr. Hansen’s understanding of the expected impact.

 

 

Dr James Hansen’s Predictions (1)

Dr Hansen’s 1988 testimonial to Congress

“My last viewgraph shows global maps of temperature anomalies for a particular month, July, for several different years between 1986 and 2029, as computed with our global climate model for the intermediate trace gas scenario B. As shown by the graphs ……… at the present time in the 1980s the greenhouse warming is smaller than the natural variability of the local temperature. So, in any given month, there is almost as much area that is cooler than normal as there is area warmer than normal. A few decades in the future, as shown on the right, it is warm almost everywhere.”  (Emphasis added)

ie by 2018

 Hansen et al 1988

 (2) The greenhouse warming should be clearly identifiable in the 1990s; the global warming within the next several years is predicted to reach and maintain a level at least three standard deviations above the climatology of the 1950. (Emphasis added)

ie by 1995

 

How is this working out?

The models of median global temperature anomalies have certainly behaved as predicted.

HADCRUT4.4 reached +3 Standard Deviations in 1990 and maintained >+3 Standard Deviations since 1997

Year Anomaly (oC) SD (1950s baseline)
1990 0.294 3.45
1991 0.255 3.01
1992 0.104 1.77
1993 0.145 2.12
1994 0.206 2.65
1995 0.323 3.63
1996 0.181 2.39
1997 0.39 4.25
1998 0.535 5.58
1999 0.307 3.54
2000 0.294 3.45
2001 0.439 4.69
2002 0.495 5.22
2003 0.507 5.31
2004 0.448 4.78
2005 0.543 5.67
2006 0.505 5.31
2007 0.493 5.14
2008 0.394 4.34
2009 0.504 5.31
2010 0.555 5.76
2011 0.421 4.52
2012 0.467 4.96
2013 0.492 5.22
2014 0.564 5.85
2015 0.675 7.53
2016 7.62

 However Dr Hansen predicted that by now it should be  ‘warm almost everywhere’.

Is this happening?

Looking at the Mean Annual Central England  Temperature (CET) Record.

By 2016 Mean Annual CET has only TWICE (2006 & 2014) exceeded +3 Standard Deviations from Climate Normal in the 1950s (1921 – 1959) as defined in Hansen et al 1988

Year Mean Temperature SD (1950s baseline) Rank SD SD

(1921-1950)

SD

(1922-1951)

SD

(1923-1952)

SD

(1924-1953)

SD

(1925-1954)

SD

(1926-1955)

SD

(1927-1956)

SD

(1928-1957)

SD

(1929-1958)

SD

(1930-1959)

1980 9.42 -0.35 144 -0.33 -0.26 -0.31 -0.37 -0.37 -0.38 -0.30 -0.36 -0.35 -0.44
1981 9.28 -0.67 174 -0.63 -0.58 -0.64 -0.71 -0.71 -0.73 -0.63 -0.68 -0.67 -0.74
1982 9.86 0.67 63 0.61 0.74 0.75 0.69 0.69 0.69 0.73 0.66 0.66 0.53
1983 10.10 1.23 37 1.12 1.29 1.32 1.28 1.28 1.28 1.29 1.21 1.22 1.05
1984 9.75 0.42 81 0.37 0.49 0.48 0.43 0.43 0.42 0.47 0.40 0.41 0.29
1985 8.90 -1.55 255 -1.43 -1.45 -1.56 -1.63 -1.63 -1.65 -1.51 -1.56 -1.54 -1.58
1986 8.81 -1.76 273 -1.63 -1.65 -1.77 -1.85 -1.85 -1.87 -1.72 -1.76 -1.75 -1.77
1987 9.08 -1.13 221 -1.05 -1.04 -1.12 -1.20 -1.19 -1.21 -1.09 -1.14 -1.13 -1.18
1988 9.80 0.53 76 0.48 0.61 0.60 0.55 0.55 0.54 0.59 0.52 0.53 0.39
1989 10.54 2.25 10 2.05 2.29 2.38 2.34 2.34 2.35 2.32 2.22 2.23 2.02
1990 10.65 2.50 4 2.28 2.54 2.64 2.61 2.61 2.62 2.57 2.47 2.48 2.26
1991 9.58 0.02 111 0.01 0.10 0.08 0.01 0.02 0.01 0.07 0.01 0.02 -0.09
1992 9.87 0.70 61 0.63 0.76 0.77 0.72 0.72 0.71 0.75 0.68 0.69 0.55
1993 9.52 -0.12 120 -0.12 -0.03 -0.07 -0.13 -0.13 -0.14 -0.07 -0.13 -0.12 -0.22
1994 10.29 1.67 27 1.52 1.72 1.78 1.74 1.74 1.74 1.73 1.65 1.65 1.47
1995 10.55 2.27 9 2.07 2.32 2.40 2.37 2.36 2.37 2.34 2.24 2.25 2.04
1996 9.22 -0.81 185 -0.75 -0.72 -0.79 -0.86 -0.85 -0.87 -0.77 -0.82 -0.81 -0.88
1997 10.56 2.29 8 2.09 2.34 2.43 2.39 2.39 2.40 2.36 2.27 2.28 2.06
1998 10.35 1.81 21 1.65 1.86 1.92 1.88 1.88 1.89 1.87 1.78 1.79 1.60
1999 10.65 2.50 4 2.28 2.54 2.64 2.61 2.61 2.62 2.57 2.47 2.48 2.26
2000 10.32 1.74 24 1.58 1.79 1.85 1.81 1.81 1.81 1.80 1.71 1.72 1.53
2001 9.97 0.93 52 0.84 0.99 1.01 0.96 0.96 0.96 0.98 0.91 0.92 0.77
2002 10.63 2.46 7 2.24 2.50 2.59 2.56 2.56 2.57 2.53 2.43 2.44 2.21
2003 10.54 2.25 10 2.05 2.29 2.38 2.34 2.34 2.35 2.32 2.22 2.23 2.02
2004 10.50 2.16 15 1.97 2.20 2.28 2.24 2.24 2.25 2.22 2.13 2.14 1.93
2005 10.48 2.11 18 1.92 2.16 2.23 2.20 2.19 2.20 2.18 2.08 2.09 1.88
2006 10.87 3.01 2 2.75 3.05 3.17 3.14 3.14 3.15 3.09 2.98 2.99 2.74
2007 10.50 2.16 15 1.97 2.20 2.28 2.24 2.24 2.25 2.22 2.13 2.14 1.93
2008 9.97 0.93 52 0.84 0.99 1.01 0.96 0.96 0.96 0.98 0.91 0.92 0.77
2009 10.14 1.32 33 1.20 1.38 1.42 1.37 1.37 1.37 1.38 1.30 1.31 1.14
2010 8.86 -1.64 265 -1.52 -1.54 -1.65 -1.73 -1.73 -1.75 -1.61 -1.65 -1.64 -1.66
2011 10.72 2.67 3 2.43 2.70 2.81 2.78 2.78 2.79 2.74 2.64 2.64 2.41
2012 9.72 0.35 85 0.31 0.42 0.41 0.35 0.36 0.35 0.40 0.33 0.34 0.22
2013 9.61 0.09 103 0.07 0.17 0.15 0.09 0.09 0.08 0.14 0.08 0.09 -0.02
2014 10.95 3.20 1 2.92 3.23 3.36 3.34 3.33 3.35 3.27 3.17 3.17 2.91
2015 10.31 1.72 26 1.56 1.77 1.83 1.78 1.78 1.79 1.78 1.69 1.70 1.51
2016 10.34 1.78 22 1.63 1.84 1.90 1.86 1.86 1.86 1.85 1.76 1.77 1.58

Which does not fit in well with what was expected.

At the individual station level:

UK Meteorological office Historical data 

9 of the published 37 long term data records allow calculation of 1921-1950 Climate Normal.

Year Armagh Bradford Durham Eskdalemuir Oxford Sheffield Stornoway Waddington Wick Airport
1970 -0.16 0.12 0.42 0.06 0.19 0.21 -1.40 -0.84 -0.83
1971 0.82 0.59 0.96 1.24 0.24 0.69 0.43 -0.44 1.36
1972 -1.41 -0.42 -0.19 0.08 -0.55 -0.54 -0.79 -1.61 0.40
1973 -0.08 0.19 0.35 0.28 0.18 0.43 -0.91 -0.40 -0.37
1974 -0.83 0.10 -0.02 0.55 0.03 -0.08 -0.04 -1.07 0.43
1975 0.88 0.82 0.71 1.41 0.76 0.82 -0.10 0.19 0.79
1976 0.08 0.56 0.62 1.12 1.09 0.64 0.38 0.13 1.01
1977 -0.84 -0.39 -0.15 0.18 -0.33 -0.58 -0.81 -1.20 -0.63
1978 -0.35 -0.29 -0.10 0.16 -0.46 -0.43 -0.76 -1.56 -0.66
1979 -2.33 -1.10 -0.86 -1.69 -1.14 -1.07 -2.56 -2.32 -1.77
1980 -0.61 -0.13 0.19 -0.02 -0.19 -0.06 -0.11 -1.38 -0.11
1981 -0.69 -0.46 -0.07 -0.59 -0.43 -0.38 -1.15 -1.63 -1.15
1982 0.11 0.51 0.66 0.75 1.00 0.71 0.04 -0.13 0.30
1983 0.81 0.62 0.91 1.32 1.37 0.73 -0.20 -0.07 0.11
1984 -0.25 0.52 0.56 1.08 0.71 0.37 0.10 -0.86 0.24
1985 -1.55 -0.64 -0.70 -1.29 -1.30 -0.74 -1.25 -2.22 -1.26
1986 -1.99 -0.88 -0.79 -1.61 -1.46 -1.30 -1.58 -2.55 -1.36
1987 -0.98 -0.33 -0.24 -0.84 -0.71 -0.64 -1.00 -1.86 -0.85
1988 0.31 0.66 1.11 0.94 0.38 0.51 0.51 -0.20 0.95
1989 1.28 1.71 1.81 1.60 2.51 1.71 0.34 1.62 1.02
1990 1.26 1.58 2.09 1.88 2.52 2.09 0.76 2.25 1.42
1991 0.24 0.27 0.25 0.22 -0.23 0.27 0.63 -0.36 0.50
1992 0.14 0.62 0.73 0.40 0.71 0.55 0.40 0.09 0.34
1993 -0.23 -0.02 -0.04 -0.43 0.27 -0.41 -0.53 -0.93 -0.98
1994 0.14 0.88 0.48 0.38 1.84 0.64 -0.22 0.79 -0.14
1995 1.78 1.42 1.31 1.51 2.37 1.43 0.01 1.34 0.03
1996 -0.35 -0.24 -0.30 -0.30 -0.30 -0.71 -0.14 -1.51 -1.04
1997 2.21 1.76 1.72 2.23 2.44 1.66 2.08 1.56 1.84
1998 1.86 1.51 1.43 1.78 1.93 1.21 0.81 1.02 0.86
1999 1.86 2.13 1.80 2.00 2.49 1.90 0.82 1.95 0.68
2000 1.28 1.41 1.42 1.51 2.06 1.11 0.83 1.01 0.62
2001 0.75 0.83 1.08 0.73 1.23 0.53 0.39 0.28 0.01
2002 1.97 1.97 2.10 2.17 2.63 1.69 2.07 1.95 2.10
2003 1.60 1.94 2.25 2.47 1.97 1.71 2.63 2.06 2.70
2004 2.05 2.02 2.41 2.54 2.64 1.93 0.99 2.15 1.69
2005 2.12 1.96 1.97 2.16 2.43 1.67 1.61 1.67 1.81
2006 2.48 2.65 2.39 2.85 3.16 2.13 2.74 2.63 2.10
2007 2.86 2.11 2.16 2.62 2.28 1.86 2.18 2.17 1.86
2008 1.02 1.34 1.26 1.77 1.44 1.08 1.00 1.07 1.23
2009 1.18 1.46 1.74 1.80 2.07 1.35 2.26 1.29 2.02
2010 -1.33 -0.42 -0.14 -1.02 -0.14 -0.56 -0.47 -1.34 -0.87
2011 2.16 2.17 2.52 2.23 2.90 2.56 1.98 2.83 2.24
2012 0.80 0.73 1.00 0.78 1.22 0.67 0.49 0.18 0.07
2013 1.11 0.67 1.12 1.11 0.55 0.50 0.59 -0.04 1.13
2014 1.80 2.51 2.81 3.01 3.34 2.42 2.77 3.05 3.18
2015 0.38 1.49 1.81 1.08 2.43 1.63 0.52 1.86 1.24
2016 1.58 1.60 1.91 1.66 2.11 1.61 1.44 1.58 1.76
Max Deviation 2.86 2.65 2.81 3.01 3.34 2.56 3.51 3.05 3.18
Year 2007 2006 2014 2014 2014 2011 1920 2014 2014

 5 out of 9 stations have exceeded 3 Standard Deviations since 1950, 4 for 1 year (3 in 2014, 1 in 1920), 1 in 2 years (2006 & 2014).

So no anthropogenic signal at the local nor regional level.

In this small corner of the world natural variability rules.

 

 

 

 

‘Imagine’

Imagine there’s no fossil fuels

It’s easy if you try

Chill earth beneath us

O’er us cold blue sky

Imagine all the people

dying in their droves…


Imagine there’s no fossil fuels

It isn’t hard to do

Naught to aid survival

the CAGW religion too

Imagine all the people

dying in their droves…


You may say I’m a dreamer

But I’m not the only one

I hope someday you’ll join us

And the population will be just one


Imagine fewer humans

I wonder if you can

All is fear and hunger

A battlefield of man

Imagine all the people

dying in their droves…


You may say I’m a dreamer

But I’m not the only one

I hope someday you’ll join us

And the population will be just one